Pandas Dataframe Loc
Use df.loc[row, column] to access specific cells.
For example, df.loc['Row_2', 'Name'] returns the value at row 'Row_2' and column 'Name'.
Basic Syntax
You can select multiple rows and columns using lists.
For example, df.loc[['Row_1', 'Row_2'], ['Age', 'Name']] returns the specified rows and columns.
Read More
Selecting Rows and Columns
Use slice notation to select a range of rows and columns.
For example, df.loc['Row_1':'Row_3', 'Age':'Name'] includes both start and end labels.
Read More
Slicing Rows and Columns
Use boolean arrays to select rows based on conditions.
For example, df.loc[df['Age'] > 30] returns rows where the 'Age' is greater than 30.
Read More
Boolean Indexing
You can set values using loc.
For example, df.loc['Row_2', 'Name'] = 'New Name' updates the value at the specified cell.
Setting Values
Common use cases include selecting specific data for analysis, updating values, and handling missing data.
Practical Examples